Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Ano de publicação
Intervalo de ano de publicação
1.
Microb Pathog ; 190: 106610, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484920

RESUMO

Jorge Lobo's disease (JLD) and lepromatous leprosy (LL) share several clinical, histological and immunological features, especially a deficiency in the cellular immune response. Macrophages participate in innate and adaptive inflammatory immune responses, as well as in tissue regeneration and repair. Macrophage function deficiency results in maintenance of diseases. M1 macrophages produce pro-inflammatory mediators and M2 produce anti-inflammatory cytokines. To better understand JLD and LL pathogenesis, we studied the immunophenotype profile of macrophage subtypes in 52 JLD skin lesions, in comparison with 16 LL samples, using a panmacrophage (CD68) antibody and selective immunohistochemical markers for M1 (iNOS) and M2 (CD163, CD204) responses, HAM56 (resident/fixed macrophage) and MAC 387 (recently infiltrating macrophage) antibodies. We found no differences between the groups regarding the density of the CD163, CD204, MAC387+ immunostained cells, including iNOS, considered a M1 marker. But HAM56+ cell density was higher in LL samples. By comparing the M2 and M1 immunomarkers in each disease separately, some other differences were found. Our results reinforce a higher M2 response in JLD and LL patients, depicting predominant production of anti-inflammatory cytokines, but also some distinction in degree of macrophage activation. Significant amounts of iNOS + macrophages take part in the immune milieu of both LL and JLD samples, displaying impaired microbicidal activity, like alternatively activated M2 cells.

2.
Front Med (Lausanne) ; 9: 861586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492305

RESUMO

Peripheral neuropathy is the main cause of physical disability in leprosy patients. Importantly, the extension and pattern of peripheral damage has been linked to how the host cell will respond against Mycobacterium leprae (M. leprae) infection, in particular, how the pathogen will establish infection in Schwann cells. Interestingly, viable and dead M. leprae have been linked to neuropathology of leprosy by distinct mechanisms. While viable M. leprae promotes transcriptional modifications that allow the bacteria to survive through the use of the host cell's internal machinery and the subvert of host metabolites, components of the dead bacteria are associated with the generation of a harmful nerve microenvironment. Therefore, understanding the pathognomonic characteristics mediated by viable and dead M. leprae are essential for elucidating leprosy disease and its associated reactional episodes. Moreover, the impact of the viable and dead bacteria in Schwann cells is largely unknown and their gene signature profiling has, as yet, been poorly explored. In this study, we analyzed the early differences in the expression profile of genes involved in peripheral neuropathy, dedifferentiation and plasticity, neural regeneration, and inflammation in human Schwann cells challenged with viable and dead M. leprae. We substantiated our findings by analyzing this genetic profiling in human nerve biopsies of leprosy and non-leprosy patients, with accompanied histopathological analysis. We observed that viable and dead bacteria distinctly modulate Schwann cell genes, with emphasis to viable bacilli upregulating transcripts related to glial cell plasticity, dedifferentiation and anti-inflammatory profile, while dead bacteria affected genes involved in neuropathy and pro-inflammatory response. In addition, dead bacteria also upregulated genes associated with nerve support, which expression profile was similar to those obtained from leprosy nerve biopsies. These findings suggest that early exposure to viable and dead bacteria may provoke Schwann cells to behave differentially, with far-reaching implications for the ongoing neuropathy seen in leprosy patients, where a mixture of active and non-active bacteria are found in the nerve microenvironment.

3.
s.l; s.n; 2022. 12 p. ilus, graf, tab.
Não convencional em Inglês | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1402006

RESUMO

Peripheral neuropathy is the main cause of physical disability in leprosy patients.Importantly, the extension and pattern of peripheral damage has been linked to how the host cell will respond against Mycobacterium leprae (M. leprae) infection, in particular, how the pathogen will establish infection in Schwann cells. Interestingly, viable and dead M. leprae have been linked to neuropathology of leprosy by distinct mechanisms. While viable M. leprae promotes transcriptional modifications that allow the bacteria to survive through the use of the host cell's internal machinery and the subvert of host metabolites, components of the dead bacteria are associated with the generation of a harmful nerve microenvironment. Therefore, understanding the pathognomonic characteristics mediated by viable and dead M. leprae are essential for elucidating leprosy disease and its associated reactional episodes. Moreover, the impact of the viable and dead bacteria in Schwann cells is largely unknown and their gene signature profiling has, as yet, been poorly explored. In this study, we analyzed the early differences in the expression profile of genes involved in peripheral neuropathy, dedifferentiation and plasticity, neural regeneration, and inflammation in human Schwann cells challenged with viable and dead M. leprae. We substantiated our findings by analyzing this genetic profiling in human nerve biopsies of leprosy and non-leprosy patients, with accompanied histopathological analysis. We observed that viable and dead bacteria distinctly modulate Schwann cell genes, with emphasis to viable bacilli upregulating transcripts related to glial cell plasticity, dedifferentiation and anti-inflammatory profile, while dead bacteria affected genes involved in neuropathy and pro-inflammatory response. In addition, dead bacteria also upregulated genes associated with nerve support, which expression profile was similar to those obtained from leprosy nerve biopsies. These findings suggest that early exposure to viable and dead bacteria may provoke Schwann cells to behave differentially, with far-reaching implications for the ongoing neuropathy seen in leprosy patients, where a mixture of active and non-active bacteria are found in the nerve microenvironment.


Assuntos
Sistema Nervoso Periférico/fisiopatologia , Hanseníase/patologia , Mycobacterium leprae/crescimento & desenvolvimento , Células de Schwann , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA